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efficient processing. Reductions of the satisfiability problem
show that finding the proper lexical-surface correspondence in a

two-level generation or recognition problem can be computationally
difficult. However, another source of complexity in the existing

.. algorithms can be sharply reduced by changing the implementation
of the dictionary component. A merged dictionary with bit-vectors

2- reduces the number of choices among alternative dictionary subdivisions
by allowing several subdivisions to be searched at once.
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ABSTRACT.

Morphological analysis requires knowledge of the stemis, affixes, combinatory patterns,
and spelling-change processes of a~language. The comtputational difficulty of the task can be
clarified by investigating the computational characteristics of specific model., of morphological

processing. The use of finite -state machinery in the Lftwo-level-' niode by Kiniino Kosken-
nicini gives it thc appearance of computational efficiency, but closer examination shows the

model does not guarantee efficient processing. Reductions of the satisfiability problem show

that finding the proper lexical surface correspondence in a tw, N,(,l generation or recogni-
tion problem canl be computationially difficult. However, another source of conmplexity in the
existing algorithms can be sharply reduce(] by chianging the inijileitation of the dictio-
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1. Introduction

* The "dictionary lookup" stage in a sophisticated natural-language system can involve
much more than simple information retrieval. In text, the words that tile system knows may
show up in heavily disguised form. Inflectional endings such as tense anid plural markings may
be present, the addition of prefixes and suffixes may change part-of-speech and meaning in
systematic ways; in many languages words may have unrelated clitics attached. The addition
of prefixes. suffixes. and] endings is oftcn accompaniied by spelling changes as well; in English,

* .try+s becomes tries anld dig+er becomies digger. Tbe rules of spelling change can bc rather
complex.

Superficially, it seems that word recognition might potentially be complicated and dif-
ficult. This paper examines the question nmore formially by investigating the computational
chiaracteristics of' the -two-level" model of morphological processes (§2). Given the kinds of
constraints that can be eiieoded in the niodel. iow difficult can it be to translate between
lexical and surface formis? Although the use of finite-state machinery in the two-level model
gives it the appearance of computational efficiency, the miodel itself does not guarantee ef-
ficient processing. Taking teIMOsystemi (Karttunen, 1983) for concretnsscin

and 6 will show that the general problem of mapping between lexical and surface forms in two.
level systems is computationally difficult in the worst case. If null characters are excluded,
the problem is MR -complete. If null characters are completely unrestricted, the problem is
P'SPACE-cornplete and thuis p~robably even harder in the worst case. The fundamental diffi-
culty of the problems does not seem to be a precompilation effect (§5).

0 1.1. Morphological analysis

The word-level processing carried out by a natural-language system is formally a type of
morphological artaly.Qi.s, concerned withI recovering the internal structures of input words. For
example. singing can be recognized as an inflecte~d formi of the verb sing, while unhappy
can be analyzed ats un+happy. liowever. the morphological component cannot break words up
b~lindly: duspite alppvaralct,4. duckling is not the - ing form of a verb. The morphological
anialyzer mnust know the basic words of the langufilage inl addition to the prefixes and suffixes. In
fa-ct, analysis Iiiust be guided by noore specifit constraints as well. Not every word can Combine
with every affix: it would b~e anl error to amialyze unit a., unfit or beer as be~er (compare
doer).

The nuirber of inflected forms of a given wordl is smaller ini Englishi than in many other
languages. As a result, for at systemn with smnall scope it often suffics to trivialize morphological
analjysi:s by hSt ing all inflct' I forums ill ther diet iouary dlirec tly. The trivial approach is not
feaLsile for hecavily inflected languages suiit s Fiiii sl. in which it word call have tliou.ands
of possible formis. In such css both practicalt an lgac euieamore systematic

treat ment ini terms of ijiffectiomad endinigs. moiod amlil tense markers. chitics. alidl so forth.

The probemmi of' recovering thle internal st rimtures of words can take an extreme fornm
iri latig lages thIat allow produict ive coi i idiii:1(111. KRoy M141 d Ii j 1mt (1982) illustrate such a
! isiation with the, (;vritlatn word Lebenversicherungsgesellschaftsangestellter, whichl

I alls-ie n.UT -oe~L ~pl u xI.Ls v cti 1Lyi mmJImL -tical when such
-V free (lnl;Hl)0ITmllilig is pO~Sibl('.
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1.2. Spelling changes

Blesides knowing the stems, affixes, and co-occurrence restrictions of a language, a success-
ful morphological anialyzer must take into account the spelling changes that often accompany
the addition of suffixes and similar elements.' The p~rogram must expect love+ing to appear
as loving, f ly-s as flies, lie+ing as lying, and big+er as bigger. Its knowledge must be
sufficiently sophisticate'd to distinguish such surface forms as hopped (= hop+ed) and hoped

(~hope+ed). Cros-linguistically, spelling-change process"s may span either a limited or a
more e'xtendted rauge of characters (§ 1.2.1), and the material that triggers a change may occur
either before or after the character that is affected (§1.2.2). Complex copying processes (§1.2.4)
may be found in addition to simpler, more specific changes.

1.2.1. Local and long-distance processes

The spelling changes associated with the addition of English suffixes are local in the sense
that they (to not affect letters far away fronm the word suffix b)oundlary. However, there are
procesec!. in other languages that operate ovcr longer distances. The spelling of Turkish suffixes
is systematically affected by vowel harmony processes, which require the vowels in a word to

.0 agree in certain respects.' The vowels that appear in a typical suffix are not completely
determnined by thle suffix, but are determined in part by the rules of vowel harmony. The suffix
that Underhill (1976) writes as -slnlz may appear in an actual word as -siniz, -sunuz,-
silniz, or -siniz depending on the preceding vowel. Turkish words may contain large numbers
of suffixes, and the effects of vowel harmony can propagate for long distances. (Hungarian
suffixes display similar changes.)

1.2.2. Left and right context

Local spelling changes often depend on right context as well as left context; for instance,
carry+ed changes; y to i but carry+ing retains y. Less commonly, long-distance changes can
also he trigrgered by material to thle right.3 Verb stemns in the Australian language Warlpiri
dlisplay a regressive change of i to u triggered by a tense suffix containing a nasal u; thus the
imperative form of throw is kiji-ka, but the past-tense form is kuju-rnu (Nash, 1980:84).
As illustrated, this harmony process canl affect more than one i in the verb stem. It canl also
propagate through the element -rni that can appear between the verb stem and the tense

Spelling-chiaige procsscs actually represenit a superficial ainalgain of phonological changes and ortho-
graphic conventions. In thiq paper. tile-(, two ispects of spelling changes will riot he distinguished. The
phonuology .uad tu orthography of a latigtiage doC riot have thle sanie st-tuis for linguistics, but the differences
Lre- riot rel(evant for present purposes. Note aom that it is the surface spelling of a word that will be presented

to t p)rogranj that anlyCes writteun text.
'For details of this process, see Underhill (1070), Clemnents and Sezer (1082). and numerous references cited

therein.
Mn.uy rren-Tt anialyses% of vowel harniony take it to be a fundaziientally uondirectional process, even inl

lat'gliigcs if] which it always appears to operate fromn left to right. For example, it appears as though the
it~tle, of roo..t vowels ont affix vow4ls ilwavys proiceds froni left to right in Tuirkish, but. this is because
Tu rkjsli lau k.. prefi zes. Civiit.o wi sd Sirr (1% 2:24011) discuiss at process of colloquoial Tuirkish in which a
vow, I i!s iuns-rtl Im -wee(,, the. initial letters- oif curt;uzi words. Tite choice oif vowel is dteruiined by the usual

lviiny riiles of Ttirkish. hutt operating fronti right to left in this catse. Seec also Poser (1082).
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ending. (Warlpiri also has another long-distance harniony provess, which operates from right
to left.)

Other languages provide further examples of long-distance changes that are conditioned
by material to the right. Kay ind Kaplan (1982) mention a vowel-change process in Icelandic
that causes vowels in the middle of a word to depend on the vowels in a following suffix. The

inflectional system of German also involves vowel clhanges. Poser (1982:131ff) discusses an
extreme example of long-distance right-to-left harmony that occurs in the language Chumash.
The process that he describes changes s to 1 throughout the entire word when an A occurs in
a suffix; thus s+lu+sisin+wag (8+all+grow awry+past) becomnes §luli inwag (it ia all grown
awry).

1.2.3. Right context and processing ambiguity

The existence of changes that depend on right context implies that the lexical-surface
correspondence for a particul; character cannot idways be determkined when the character is
first seen in a left-to-right scan. However, right context is not crucial for the occurrence of
this difficulty. The same kind of local ambiguity can arise eveil when spelling changes do not
depend on right context.

Suppose we were to remove the dependence of the y-to-i change on right context by con-
sidering a rule systerm in which y always changes to i after p.4 There could still be uncertainty
about how analysis should proceed. A surface string beginning spi ... could correspond to a
lexical string spy... as in spies, but it could equally well correspond to spi.. as in spider
or spiel. In general. analysis may proceed several characters beyond a choice point before it
becomes apparent which choice is correct. This is especially true with a large system vocabu-
lary: in the above ex;mlple. a system that did not know any spi... words could immediately
rule out spi ... in favor of spy. .. , but a system with more complete coverage would have to
look further into the input before it could identify the correct choice.

1.2.4. Reduplication

Some languages display a kind of change called reduplication that often does not lend
itself to analysis by the kinds of mechanisms that are appropriate for the other processes that
have been nentioned here. Redlplication processes involve the copying of consoniints, vowels,
syllables. roots. or other subunits of words. Nash (1980:136ff) describes a r(duplication proccss
in Warlpiri that copies the first two syllables of a verb wd.Id has various semantic effects. For
example. he cites the sentence

pirli ka parnta-parnta-rri-nja-mpa ya-ni

hill P1I ES crotich-IEDI TP INF-across go-NONPAST

The mountain ertrnds in a setrie.q of humps.

'if y always cl;awc-s to i aftcr p. what jicstifliatmi coud there hu for 4ayiig that spy and not spi is the
correct inderlying fccrcc', Ihn this trivid cotistr ictcd exai;l h. thre is nijoc. Iii an a(tiucd latuigage, there could

he evidewo-c froi ia varity ,f sources: 4ccftuxes cgiiuig with y: haru'n y iroc(. s: ruic that crcite or destroy
the p tlat triggers tlw hu ic ge; rules th.it are trigg(rcd by the y i,,fhrc it Ih l cg:: cuit so forth.

-3
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in which the verb stem parntarri- has undergone reduplication. 5 Lieber's (1980:234ff) dis-

cussion of several reduplication processes in the launguage Tagalog provides other examples.

One Taga.log reduplication process copies the first consonant mnd vowel of the stem, making

the copied vowel short; another is similar, but makes the copied vowel long; a third process

copies the first syllable and part or al of the second, lengthening the copied vowel of the second

syllable. See also McCarthy's (1982:193f) treatment of reduplication in Classical Arabic.6

i",

'The byieie, in the Waripiri eam~ples are inserted as att analytical aid for the reader, and do not conform

t o her 4twjda Lrd ,,rt.Jiogyaphly (ILd,l 108~2: 222).
'Mc(%.uthy'P trcdtinvist of Ariabic is. of theoretical interr.t for at le.Lot two remsoi: it lhelp% illumninate the

niature of iuigiii.tic relircmentatinD. juid it show.- a way thi derive ilauay chiaracterilstics of Arabic reduplication

4 ~frouit iver~al hitugihist ic ;prinph-s rat her than lauige(-parI iclii r Ptipniitons.

4
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2. Two-Level Morphology

Given a description of the root forms, the combinatory patterns, and the spelling-change

rules of a language, the morphological analysis task is well-defined in ani abstract sense. How-

ever, a practical morphological analyzer also needs an efficient way of putting its linguistic
knowledge to use in actual processing. The KIMMO system described by Karttunen (1983)

is attractive for this purpose. KIMMO is an implementation of the "two-level" model of mor-

phological analysis that Knimno Koskenniemi proposed and developed in his Ph.D. thesis.7

Spelling-change rules are encoded in a finite-state automaton component, while roots and af-

fixes are listed with their co-occurrence restrictions in a dictionary component. The focus
here is on the automaton component. (Reduplication processes find no easy treatment in the

KIMMO system, and will henceforth be ignored.)

2.1. The Automaton Component

The two-level model is concerned with the representation of a word at two distinct levels,

the lexical or dictionary level and the surface level. At the surface level, words are represented

as they might show up in text. At the lexical level, words consist of sequences of stems,

affixes, diacritics, and boundary markers that have been pasted together without spelling
changes. Thus Karttunen and Wittenburg (1983) represent the surface form tries as try+s

". at the lexical level. Similarly, the Warlpiri surface form kijika might be represented at the
lexical level as kIcj I-ka, where I is a special lexical character that can surface as either i or

u according to harmony rules.

2.1.1. Expressing Spelling Changes as Two-Level Automata

A spelling-change rule in the two-level model is expressed as a constraint on the corre-

spondence between lexical and surface strings. For example. consider a simplified "Y-Cliange"

process that changes y to i before adding es. Y-Change can he cxpressed in the two-level

model as a constraint on the appearance of the lexical surface pairs y/y and y/i. Lexical y
must correspond to surface i rather than surface y when it occurs before lexical *s. which will

itt olf come out as surface es (ice to the operation of other constraints.

Each constraint is encoded as a finite-state zoachine wit, two scanning heads that move

along the lexical and surface strings in paradl. The inachin stkrt, oit ti state 1. ued at each

step of its operation, it chaniges state based on its cirrent stati ,old thc pair of characters it

is scanning. The autonmaton that encodes h le Y-Change constraici womld b dv'sribed by the

7 tlnivcrsity of Hclsinki. Finland, circa F;Jl 1083.

5
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following state table:

"Y-Change" 6 B
y y a a = (lexical characters)
j y = a = (surface characters)

state 1: 2 4 1 1 1 (normal state)
state 2. 0 0 3 0 0 (require +s)
state 3. 0 0 0 1 0 (requires)
state 4: 2 4 5 1 1 (forbid +s)
state 6: 2 4 1 0 1 (forbid s)

In this notation, taken from Karttunen (1983) following Koskenniemi, = is a certain kind of
wildcard character. The use of : rather than . after the state-number on sonic lines indicates
that the : states are final states. which will accept end-of-input. In order to handle insertion or

deletion, it is also possible to have a nuill character 0 on one side of a pair,8 but the possibility
of nulls will not be given full consideration until section 6.

In processing the lexical-surface string pair try+s/tries, the automaton would run
through the state sequence 1,1,1,2,3.1 and accept the correspondence. In contrast, with the
string pair try+s/tryes it would block on s/s after the state sequence 1,1,1,4,5 because the
entry for s/s in state 5 is zero. With the pair try/tri it would not block with any zero
entries, but would still reject the pair because it would end up in state 2, which is designated
as non-final.

These examples illustrate how the Y-Change automaton implements dependence on the
right context +s. The automaton will accept either of the correspondences y/i and y/y, but
if it processes the y/i correspondence, it will enter a sequence of states that will ultimately
block unless the y/i pair is followed by the appropriate lexical context +s. The right context
for a vowel harmony process might scent more difficult to encode because it may be necessary
to ignore several intervening consonants, but such a situation actually presents no problem at
al. An automaton state can easily ignore irrelevant characters by looping back to itself.

2.1.2. Multiple Spelling-Change Processes

A language will generally exhibit several different spelling-change processes: for example,
K;Lrttutneti (1983:177) mentions that Koskenniemi's analysis of Finnish uses 21 rules. By and
large, these separate processes can be encoded as separate automata in the KIMMO system.
In actual processing, the automata that express various spelling-change constraints will all
inspect the lexical surface correspondence in paradlel. The correspondence will be accepted
oily if every automaton accepts it - that is. if it satisfies every constr;dnt.' Because the
'tliltonnatit are confnected in paradlel rather than in serie., there are no "feeding" relationships
letweeji two-level au11tollata. 1 ( Figure 1 illustrates the parallel arrangenent of the KIMMO

"ThlL lt ld KI M M( 1 y rti'nz of Karttonen (1983) does not allow uull characters at the lexical level, but the
(I 1~.~4( 1 I l n.enil d (Katrtturi.ii. p.c.).

"If will haract-rs are ;dlowed. the interpretation of " atisfying every constraiut- takes on a certain subtlety.

It i, it tloretical clait o of t he two-level framework that interioqdiate lvel of rejireseiitatioi itilt] 'feeding"
roationslh ps are not iw(essary thAt two levels so tice. ill other word . Se-ries couriection of the aitoiata __..

""N'
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certainly be redesigned.

The automnaton component rather than the dictionary component of the KIMMO system is
thev maini object of attention here, and little more will be said about the dictionary component
until section 7.1.

2.3. Generation and Recognition

A KIMMO systemn does riot particularly lean toward either generating or recognizing the
woirds of a language. Since the machines of the automaton component just express constraints
oni perinissible lexical surface correspondences, they can serve equally well to determine the
lexical form of' a surface wordl (recognition) or to mnap a lexical stein with affixes into the
piroper surface formi (generation). The only major difference is wbether the process is driven
by the -surface or lexical formn. However, the recognition algorithmn is slighitly more complicated
lu-cause it uses the lexicon as well as the automnata to constrain the analysis of an input word.

*(A,, Karttunein (1983:184) notes;. it would require only a simple change to run the recognizer
Nvithout the constraints of the stem lexicon. Such it mode of operation would be useful for
stripping recognizable suffixes fromi unfamiliar roots.)

8
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3. The Seeds of Complexity

The use of finite-state machinery gives the two-level model the appearance of computa-
tional efficiency, hut in the worst case at KIMMO generator or recognizer has a lot of work
to do. This section probes poss5ible sources of comiplexity, while the next section will exploit
thiemi in niathemiajecal reductions that answer the question of how hard KININ-O generation
and recognition can be in the( general case.

3.1. The Lure of the Finite-State

At first glance, the KIMMO system raises hopes of Unfailing efficiency. Both recognition
and generation seem to be a matter of step)ping finite-state niaciies through the input from
left to right, a process that taike4 only a quick array reference or so per character. Any

nondeterminusta that mlight arise causes little initial conlcern, since i('thods of determinizing

finite-state machines are well-known. Lexical hookup canii aso be done quickly, character by
character, interleaved wit', the( speedy left-to-right progress of thle automata:

It is a commnon technique to represent lexicons as letter trees because it minimizes
the timne spent on searching for the right entry. The recognizer only makes a single
left-to-right pass as it homes in on its target in the lexicon. (Karttunen, 1983:178)

The fundamental efficiency of finite-state machines promises to make the( speed of KnMMO

processing for a language largely independent of the nature of the constraints that the automata

encode:

The roost important technical feature of Koskennmierni's and our implementation of

the Two-level mnodel is that miorphiological rules are rellrcsentedl in thle processor as
automata, more specifically. as finite state transducers.. One( imphortant conse-

quence of compiling Ithe grammiar rules into automnata] is that the complexity of the

linguistic dlescription Of' a language has no significant effect onl the speed at which

the forms of that language can lbe recoglliz('d or generated. This is (lie to the fact

that finite mtate m~achines are very fast to operate because of their simpjlicity..Al-

though Finnish. for example. is niorpdiohOgiCalhy a mnuch miore complicated language

thani Em ifIish . thIiere is ii 0 (i feren ce of' tie( s;airi emiagnI itude in tit( processinig times

for the( two honiuages .This falctl haLs some1 pSveloliiigii 1ist iC iiit(-res.t because of

tie coin iioi sensie ot)se(rv;i ioni I hat we tak alboumt "sii m ple" mid -c omlmjex" luiguages

but riot about w~ataid '-slow" onies. (: 166f)

In order for the aot oiriatoi- based two-level irlodle to be of psyelioliiiguist ic interest in this

wiay. it mu11st he the miiodel it self that wipes out processing difticiilty. rather than soriie acci-

dlental property of time core raiits that the( atitomita enlcode. hii Iiimli the saie vein. Lirnd-

steil? (198-1:171) renmarks Fihlloviig Koskcimiiiiiii that "it is psychioliniigiist ically interesting to

note, that the 'two-level, rules aurc u'juliV~deit to such col11ilpmt iii;dly Sipi ll rd effective 4..

('fhci('it dhevices.' aginl pickiiig, miit the( hiite-stille nmachinery ai the factor responsible for

col pt tilt iorial eficicy.
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3.2. Sample Recognizer Behavior

In assessing the computational characteristics of the KIMMO processing algorithms, it is
logical to begin with an example. Figure 2 shows the operations that a KIMMO recognizer
for English goes through when it analyzes the word tpiel. From inspecting the sequence of
lexical forms that are considered, it is clear that the recognizer does more than just gliding

from left to right through the string.

For example. at step 7 the recognizer is consideriug the lexical string spy+, y surfacing as
i and + as e, under the theory that the input word might be a plural form of the noun spy -
spies or spies', that is. At step 9 that analysis hasA failed to pan out and spy+ is considered
again, this time with + coming out null on the surface instead of matching the input e. At
step 11 the recognizer has dropped back to the form spy that it was considering at step 4, this
timle taking the root as a verb. All of the spy possibilities ultimately fail, and at step 52 the

recognizer finally tries spi instead, repudiating the incorrect choice that it made in step 3. In
step 53 it assumes that the e in the lexical form spit... might have been deleted, but this
idea soon founders. Finally, in step 59 it finds the correct lexical entry spiel.

3.3. Sources of Runtime Complexity

Traces of recognizer operation reveal several factors that combine to determine the overall
computational difficulty of an analysis. The recognizer must run the finite-state machines of
the automaton component and descend the letter tree3 that make up a lexicon, it must decide
which suffix lexicon to explore after finding a root, and it must discover the correct lexical-
surface correspondence.

3.3.1. Stepping through the automata and the lexicon

First of all, sonic of the recognizer's activities are concerned with the mechanical operation
of the automata and the letter trees of the lexicon. Running the automata is expected to
be fast; there are many well-known fast implementations of finite-state machines. differing
somewhat in their time and space requirements. Descending a letter tree should also be easy,
in any of its common implementations.

q
3.3.2. Choosing among alternative lexicons

Second. the recognizer often makes unfortunate choices about the path that it should

follow through the collection of lexicons in the dictionary component. Quite a few nodes in
" •the .earch tree of Figure 2 represent choices mnong alternative lexicons (LLL). For example,

at step 11 the recognizer may search any of several lexicons next: the lexicon I that encodes
the fact that the pre'sent indicative of a verb may have no added ending. the lexicon AG that

' contains the agelitive ending +er, or one of several other lexicons that contain +ed and other
inlihct iolal endings.

Tile :.earch for at path through tbe su41ffix lexi-ons4 Of tile dictionlary component can take
c(cm'iderabJl 'inie in the current KIMMO iniplenientation. However, such wmidering can be

10
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-. . Recognizing surface form "spiel".
I S 1.4.1,.,1
2 sp 1.1.1,2,1,1
3 SPY 1.3.4,3.1,1
4 ".spy" ends, new lexicon N
5 "0" ends. new lexicon C1 ----- LI11
6 SPY XXX extra input
7 (5) spy+ 1.5.16.4.1,1 +X+
a SPY+ XXX .-x+X+
9 (5) spy+ 1.6.1.4.1.1
10 SPY+ XXX LtII
11 (4) "spy" ends, new lexicon II

1 2 SPY XXX extra Input LLL'---'XXX'
13 (4) "spy" ends, new lexicon P3I
14 SPY+ 1.6.1.4.1.1 ---+XXX+
15 SPY+ XXXI
16 (14) spy+ 1.5.16.4.1.1 111+----XXX'
17 SPY' XXX -

18 (4) "spy" ends, new lexicon PS -- +XXX4'
*19 SPY+ 1.6.1.4.1.1 -+ AAA+

-.- 20 spy+e 1,1.1,1.4.1
21 spy'e XXX [LL--------- XXX*
22 (20) spy+e 1.1,4.1,3.1
23 spy+e XXX
24 (19) spy' 1.5,16,4.1,1I
25 spy'e XXX Epenthesis -- AA
26 (4) "spy" ends, new lexicon PP

%27 SPY* 1.6.1.4.1.1 LLLt''''XXX+

28 spy+e 1.1.1.1,4,1 X
29 spy'e XXX
30 (28) spy'e 1.1,4,1.3.1 LL----XX
31 spy'e XXX LL-----XX

*32 (27) spy+ 1,5,16.4.1,1 -- XX
33 spy'e XXX Epmnthesls
34 (4) "spy" ends, new lexicon PR -+A+
35 SPY+ 1.6.1.4,1,1

%36 SPY+ XXX LL'+- - -XXX.
37 (35) s.py' 1.6,16.4,1,1
38 SPY+ XXX-- 'Xi
39 (4) "spy" ends, new lexicon AG-----X+
40 SPY+ 1,6.1.4,1,1 X'
41 spy+e 1.1.1.1.4,1A....LLL+0*
42 spyee XXXI
43 (41) spy'e 1.1.4.1,3,1 --"'XXX+
44 spy+e XXX
45 (40) spy' 1.6.16,4,1.1
46 spy'e XXX Epenthesis
47 (4) "spy" ends, new lexicon AR
48 SPY' 1.6.1.4,1,1
49 SPY+ XXX Kyt rends
50 (48) spy+ 1.6.16.4,1.1 Kyt rends
51 SPY+ XXX -- normal traversal
52 (3) spi 1,1,4.1.,5 LII new lexicon
53 sple 1,1,16,1.6.1 AAA blocking by automata
54 spie XXX XXX no lexical-surface pairs
55 (53) spie 1.1.16.1.5.6 compatible with surface
56 spiel 1.1.16.2.1.1 char and dictionary
57 "spiel" ends, new lexicon N M1 blocking by leftover input
58 "0" ends, new lexicon Cl . analysis found

*59 "spiel" ** result
60 (58) spiel+ 1,1.16,1,1,1
61 spiel+ XXX

(("spiel" (N SG)))

Figure 2: These traceg s;how the step% that the KIM MO recognizer for English gZoes through while
% analyzing the surfatce fornI Spiel. Each lhne of' the( taible on the left shows the lexical string and

alitosziaton st'ates at the Cind of t st ep. If soin ii'otoniaton blocked, then autoiit oi Mtates~ are replaced
by wi XXX entry. An XXX enltry withj no auit((iiiatoni uiui indicastes thiat tih' lexical string could not
In' eXten~ded 01Cns teSllrf~tce cha~rascter ;ui' lexical lette'r tr''t' t(':,'~lhr rid'd ot all feasible pairs.
AI'tvr an XXX or *** entry, In' rveognizer backtraLcks and picks op froiio a ;ri-vs'i'l d ioire point.

indhicat ed by thle parenjtI sizv.d ,(v'p uIIII ii r bt-ohre tin' lcxic al strinig. T iw t ree tin I ri ght d 1epict s

the search graphically, reading frout left to rigilt aond top th,,t bto(ni withi Yvrtic-;k bars linking the
('lances aIt VW 11 ChOicC Ioint . The' igiires- were '"'n'rastv'd wit li a h I \IlI M nuileieuitat (in writtvn in an
;ligintetl V('tsioul of MAIAS I I based init ially on Kasrttoinii's ( 198: 1421 dg'rillIiiii description; t(ne
ilict ionaLry (LiI ;mitoinatoli coinipwiiit-s for Eiz!Ilisli were I Lklii ir''ii i Kartt I101 unol ;'A %t teldirg ( 1983)
with ixnir elouiges. This iiiipliieiitation sevarch's depth-first ;L4 harttinieiis doc('. hot explore.4 the

dltvruutivv.4 at ai gi ven depthI iii a dIill 'rent order froi K hrt t otien 's.



Recognizing surface form "spiel".
1 s 1,4,1.2.1.1
2 sp 1.1.1,2,1,1
3 spy 1,3,4,3,1.1
4 "spy" ends, new lexicon (IN)
5 "0" ends, new lexicon (Cl)
6 spy XXX extra input
7 (5) spy+ 1.5,16.4,1.1 --------- +LLL+LLL+III+
8 Spy+ XXX

9 (5) spy+ 1,6,1.4,1.1I-+XXX+10 SPY+ XXX -X+

11 (4) "spy" ends, new lexicon (/V)
12 spy XXX extra input
13 + spy+ 1.6,1,4.1.1
14 spy+e 1.11,1,4,1
15 spy+e XXX
16 (14) spy+e 1.1.4.1,3.1 I
17 spy+e XXX
18 (12) spy+ 1.5.16,4,1.1 --- +AAA+
19 spy+e XXX Epenthesis
20 (3) spi 1.1,4.1.2.5 ------ +XXX+
21 spie 1.1,16,1.6,1
22 spie XXX +LLL+LLL+00+
23 (21) spie 1,1.16,1.5,6 I+XXX
24 spiel 1.1.16.2.1.1
25 "spiel" ends, new lexicon (/N)
26 "0" ends, new lexicon (Cl)
27 "spiel" * result
28 (26) spiel+ 1,1,16.1,1
29 spiel+ XXX

(("spiel" (N SG)))

Figure 3: The dictionary modification that will be described in section 7.1 causes the KIMMO rec-
ognizer to m-ake fewer choices among lexicons. These traces show the steps that the recognizer goes
through in the analysis of spiel when the lierged dictionary is used; the number of lexicon-choice
njodes (LLL) is lower than in Figure 2. The nanes of the merged lexicons are written in parenthe-
sized frm to indicate that each one actually represents a class of lexicons in the original dictionary
(hescription. A entry in the backtracking column indicates backtracking from an inunediate failure
in the previous step, which does not require the full backtracking mechanism to be invoked.

sharply reduced by merging the lexicons in such a way that several lexicons can be searched
in parallel: section 7.1 will explain in detail. Meanwhile, taking this improvement for granted
will make it possible to sidestep the problem and focus on other proceses. With the merged
dictionary, Figure 3 shows that the number of lexicon -choice alternatives in the search tree for
spiel is reduced from 8 to 2. 1 cutting the total number of steps from 61 to 29. (The choice
between spy--noun and spy-verb remains because it would be directly reflected in the output,
but the purely internal choices among the lexicons for different verbal endings are eliminated.)

3.3.3. Finding the lexical-surface correspondence

Finally. some of the backtracking resnlts from local wudhiguity in the construction of the
If icLal surface correspondcncc. Even if only one po.ssibility is globally compatible with the

a- contraiits imp(ed by the lexicon ad the autonmata. there may not be enough evidence at
ev(ry point ii processing to choose the corre(ct lexical surface pair; swarch behavior results.

'Tla'mw figures count LLL nodes excluding unuobiguous choices.
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--- -- ------- L LLL [11+ L LLL.1T1111+

-+/+

(/V)

+/0 e/0

--- -- --- -- --- -- --- -- ----- XXXXXXK+

+/e e/O
------------------------------------------------AAAAAAA+

/1 e/O
-----------------------------------------------+xx~XXXX+

e/e 1/1 (IN) (Cl)
-----------------------------------------------LLLL L LLLLL ILL+***$+

+/0
-------------------------------------------------------+XXXXXXX+

(("spiel" (N SG)))

Figure 4: This expanded version of the search tree from Figure 3 shows what hypothesis the KIMMO
recognizer is entertaining along each path, during the analysis of spiel with a merged dictionary.

Figure 4 displays thc search graphically with an expanded version of the merged-lexicon search
tree from Figure 3, annotated with information about the specific choices the rccognizer has

at each point.

Thus, after seeing the surface characters sp. .. , the recognizer did not have enough
evidence to choose between the lexical possibilities spy ... and Dpi. .. , even though only
one analysis was possible for the complete input spiel. Duiring exploration of the spy ..
possibility in the U/V) lexicon, there was uncertainty about the pairs +/0, +/e, e/0, and
e/e. It proved unprofitable to explore those regions of the tree in the analysis of spiel, but
Figures 5 and 6 show that the correct analysis can lie in those regions for other words.

Similarly, in analyzing the word rubbish (Figure 7), the recognizer cminot tell after
seeing only rubb. ... whether the lexical string is rubb. ... as in rubbish or rub+. . . as in

rub+ing => rubbing. In fact, it briefly considers the possibility that surface r... maight
correspond to lexical re' . . . as in the stress-iiiarked lexical representation re'fer, but it
quickly discovers that the right context for licensing the e/O pair is absent. (Recall from
section 2.1.1 how a KIMMO auitoinaton iniplements a change that depend-; on right context:

initially it permits the changed pair in the expvctationi that the proper right context will be

found, wid upon processing the changed pair, it enters a state-sequence that will eventually
block without the necessary right context.)

InI thes(es 11isgUidCd Searchi subtrees did not get very deep -- largely because the
relevant spellizig-cliaige prrc(sM('s were local ini cliaract er. Lon g-dist ance hiarmiony processes

are also possible (§~1.2). and thus there cani potenlt ially be a long int erval before t he accept ability
of a lexical siirface pair is nit iziutc 'ly det (r~ilil d. For example. whena vowel alterntationis within

a vcrb Ain atEIjre coniti iujed fly thle ocr urrencv ( of iiiri liclar t(enst sufi ixes . it may be necessary
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S/S Pip Y/l (IN1  C
--- ----- -- -- 11--- L IL I' LILL 11 1 1+

+/0
----- +XXXXXKX4

LLLLILL+1I11111+

+/0 0/0
-------- + - xxxxxx+

Ole d/d
------------------------------------------------------

M/ e/0
- - - - - - - -+ XXXXXXX+

e/e
--------------------------------------XXXXXXz+

(("spy+ed" (V PAST PRT)) ("spy~ed" (V PAST)))

Figure 5: The search tree for spied is simnilar to the search tree for spiel (Figure 4), but the solution
lies in a different region of the tree. Neither part of the search can be eliminated, since either one mmay
contain the solution.

------------- + 441111+ILI 1111+111T111+

/c s/s (C2)
------------------------------------------------ L 14IL+0*0000+

+/V)

LLILLIL+II1II!+

*+/0 e/O
--------- + - xxxxxxx+

e/e
--------------------------------------------------- +XXXKXXX+

---------------------------------------------- AAAAAAA+

S/S

---- --- --- ---XXXXXXX+

L-- 4XXXXXXX+

(("spy's' (V PRFS SG 3RD)) ("spy+s" (N PL)))

Figure 8: Iii the analysis of spies. the location of the solution in the search tree is different from its
location for spiel (Figure 4) or spied (Figure 5). Thus none of the three main regions of the tree
can be p~rimed from the search.
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Recognizing surface form "rubbish".
1 r 1.1.1.2.1.1 12 + rub+i 1.1,1,1.2.6
2 re 1.1,1,1.4.1 13 rub+i XXX
3 re' XXX Elision 14 (6) rubb 1,1.16.2.1,1
4 (2) ru 1,1.4.1.2.1 15 rubbl 1.1,16,1.2.6
6 rub 1.1,6.2.1.1 16 rubbls 1,4,16.1,1
6 "rub" ends, new lexicon (/V) 17 rubbisht 1,3,16,.,1.1
7 rub XXX extra input 18 "rubbish" ends, new lexicon (/N)
8 + rub+ 1,1.3.1,1,1 19 "0" ends, new lexicon (Cl)
9 rub+e XXX Gemination 20 "rubbish" 00 result
10 (7) rub+ 1.1,2,1,1.1 21 (19) rubbish+ 1,6,16.1.1.1
11 rub+e XXX Gemination 22 rubbish+ XXX

(("rubbish" (N SG)))

Figure 7: While analyzing the surface form rubbish. the Kim MO recognlizer is temporarily misled
(i) b~y the possibility that a lexical e' might have been dleted at the, surface andl (ii) by the possibility
that the surface bb mighlt have requlted frowm doubling of a single unjerlying b. However, in each case
thle Possibility fails to Pall out. (Refer to Figure 2 for an explanatiop of thme table format.)

to sec the cnd of the word before making final decisions about the stem."2 The possibility of
d a long period of uncertainty forms the basis for the reductions in section 4.

3.4. Search and Verification

Setting aside until section 7.1 the problem of choosing aimong alternative lexicons, it is
I~easy to see that the use of finite-state machinery helps control only one of the two remaining

sources of complexity. Stepping the automata should be fast, but the finite-state framnework
does not guarantee speed in the task of guessing the correct I exic al --surface correspondence.
The search required to find the correspondence may predominnte.

In fact, the KIMMO recognition and generation prob~lemns hear an ominous resemblance
to problems in the computational class N P. N P consists of tile problems that can be solved
onl a Nondeterministic Turing machine within Polynomial tin(.. linormally, a problem in NP
has a solution that may be hard to guess (hence the use of noisdeterministic machines) but is

- .* easy to verify (in polynomial time):

[Informally,] we view [a nondeterministic algorithm] as being composed of two Sep-
arate stages. the first being a guessing stage and the second a checking stage..

q (Garey and Johnson, 1979:28)

It should be evidlent that a "polynomial time riondetermninistic algorithm" is basically
a dlefinitionlal device for capturing the nlotion iof polynomial time verifiability, rather
than a realistic miethmod for solving decision prolemns. (:29)

This difference in (difficulty between guessing and verification seenms to fit time KIMMO fraxnc-
work: the finite-state two-level automanta can verify a solution quickly. but it may still he hard
to guess thle correct lexiCal surface corre.spondence.

"Sitice loll -dist anceC fight routtext is part of the wo)rl(in. it, lis been siirge.sted that KIM MC processing in

thle prolia~tic canses wouild Ili easiier if carried owit fromo right to left. hlow ver, flt- mor, comoiio left context

WOIIml tleim 47.1118 difl(I u ms andm wImIA could be 'toill. abloi niiaxe(I riti N~ti in wlmili lboth lt-ft anud right
con~tCXt p)lay a role? In fact. ft(i rediictionst in suction 4 4how thint no siiniilf fix wil )-Ili fimt flit, geneiral eatse.
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It is not always apparent from local evidence how to construct a lcxical surface corre-
sp~ondence that will satisfy the constraints imposed by a set of two-level automata: thus the
KIMMO algorithms contain the seeds of complexity. The next sections will exploit those seeds
in mathematical reductions that prove KIMMO recognition and generation are computation-
ally difficult in the worst case. The finite-state two-level framework itself does not guarantee
computational efficiency.

r 6
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4. The Complexity of Two-Level Morphology

The reductions in this section show that two-level automata can describe computationally
difficult problems in a very natural way. It follows that the two-level framnework itself cannot
guarantee computational efficiency. If the words of natural languages are easy to analyze,
the efficiency of processing must result from sonie additional property that natural languages
have. beyond those that are captured in the two-level miodel. " Otherwi. computationally
difficult problems might turn up in the two-level automata for sonic niatural language, just as
they do in the artificially constructed languages here. In fact, the reductions are abstractly
m~odeled on the KIMMO treatment of harmiony processes and other long-distance dependencies
in natural languages (see §§3.3.3,1.2).

4.1. The SAT Problem

The reductions involve versions of the Boolean satisfiability problem (SAT). Ant instance
of SAT consists of a Boolean formula in conjunctive normal form (CNF), and the question to
be aniswered is whether there is a way of assigning values (T,F) to the variables so that the
formula comes out true. Thus the formulas

(X V i4&X V 9)
(Y V jj)&(W V Z)&(9 V i)&(x V Y V Z)

axe satisfiable, while the formulas

(X V ii)&(x V P)&Y
(X V Y V Z)&(Y V -i)& (Y V Z) &(9 V T) & ( V Z) &(Y V Y)

are unsa-tisfiable. The SAT problem is NP-complete and thus comrputationally difficult. The
related problem 3SAT is a restricted case of SAT in which every disjunction mrust have exactly
three disjuncts. (This restricted form of CNF is known as 3CNF.) 3SAT is also AiP-coumplete,
though 2SAT is not.'

4.2. KIMMO Generation is .MP-Hard

It is easy to encodle an arbitrary SAT prolenm w; a KIMMO generation problem. The
genera] problem of mapping from lexical to surface fornis in KIMMO systelirs is therefore NVP-
hard. i.e. N P-complete or worse (see section 6). Formally. define a possible instance of the
computational problem KIMM() GENERlATION ws iuiy pair (A. ry) . where A is the auitoniaton
componient of a KIMMO system specifiedl x; in Cmkjek a al. (1983) wurd e7 is a string over the
alphabet of the KIMMO system. An amua istance of' KIMM() C EE(AINwl eamI ~ "For more exteiisivi' tteorit ical cliSCI.SiotIS (If effiCienlt 1)rocvssability, see fl~r'sick anid Weinberg (1982),
Dacrt c (108iL), . ad references cit ccl therein.

"SAT wacs thie first pirolemixc to be proved V~P (-omvtclit ( Cook's TIwcinc 1071). The A P-coni lltcIirq of
.43SAT is als-o well-knuown. For detacils. sev C;arey anid J ohnqoii (1070) or imry it.cditcxt hook.
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"x-consistency" 3 3
' x = (lexical characters)
T F i (surface characters)

1: 2 3 1 (x undecided)
03 2: 2 0 2 (z true)

3: 0 3 3 (X false)

Figure 8: The KIMMOgencrator system that encodes a SAT formula wp should include a consistency
automnaton of this form for every variable x that occurs in 'p. The consistency automaton constrains
the mapping from variables in the lexical string to truth-values in the surface string, ensuring that
whatever value is assigned to x in one occurrence must be assigned to x in every occurrence.

",'_. satisfaction" 3 4sat".aion -~ . (lexical characters)

T F - (surface characters)
1. 2 1 3 0 (no true seen in this group)

2: 2 2 2 1 (true seen in this group)
3. 1 2 0 0 (-F counts as true)

Figure 0: The SAT generator system for any formula should include this satisfaction automaton, which
determines whether the truth values assigned to the variables cause the formula to come out true.
Since the formula is in CNF. the requirement is that the group-. between commas must all contain
at least one true value. hI state 1, no true 7alue has been seen; F cycles, while T goes to state 2 to
wait for the cotmna that begins the next group. State 3 remembers a preceding minus sign so that
-F can count as true. Only state 2 is a final'state because only state 2 indicates that a true value haa
occurred.

possible instance (A. or) such that for some a', the lexical-surface pair a/a' satisfies the con-
straints imposed by the automata in A. Thus (A, a) is an instance of KIMMO GENERATION
if there is any surface string that can be generated from the lexical string a according to the
automata. (As the problem is defined. a~u algorithm is not required to exhibit the surface
strings that can be generated, but only to say whether there are any.)

To encode a SAT problem 'p as a pair (A, a), first construct a from the CNF for-
muia p by a notational translation. Use a minus sign for negation, a comma for conjunc-
tio. amd no explicit operator for disjunction. Then the a corresponding to the formula
(Y V y)&( V z)&(z V y V z) is -xy,-yz~xyz. The notation is uambiguous without paren-
thv'.tvs because p is required to be in CNF.

Second. construct A (in polynomial time) in three parts. (A varies from formula to formula
only when the formula involve different sets of wriables.) The alphabet specification should list
tim, variables in a together with the special characters T. F, minus sign, mid romma. The equals
si!1i should be declared as the KIMMO wildcard character, as usual. The consistency automata,
miio for each variable in a. should he constructed a.s in Figure 8. The satisfaction automaton
shild be copied from Figure 9 nidu does not vary from formula to formula. Figure 10 lists

the vntire SAT generator system A for formulas p that use variables x, y, and z.

The generator system used in this construction is set up so that surface strings are identical

% 18
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"x-consistency" 3 3
ALPHABET x y z T F - X

T F
- . ANY * 1: 2 3 1

END 2: 2 0 2
3: 0 3 3

"y-consistency" 3 3
Y Y-
T F.

1: 2 3 1
2: 2 0 2
3: 0 3 3

Figure 10: This is the conplete KIMMO generator '-cons istency" 3 3

system for solving SAT problems in the variables T F
x, y, and z. The system includes a consistency au- 1: 2 3 1
tomaton for each variable in addition to a satisfac- 2: 2 0 2
tion automaton that does not vary from problem 3: 0 3 3
to problem. "satisfaction" 3 4

T F
1. 2 1 3 0
2: 2 2 2 1
3. 1 2 0 0

END

to lexical strings, but with truth values substituted for the variables. Thus any surface string
generated from a will directly exhibit a satisfying truth-assignment for Vp. The consistency
automaton for each variable x ensures that the value assigned to x is coisisteit throughout
the string. In state 1, no truth-value has been assigned and either x/T or x/F is acceptable.
In state 2, x/T has been chosen once and therefore only x/T can be permitted for other
occurrences of x. Similarly. state 3 allows only x/F. All of the states of the x-consistency

*B automaton ignore punctuation marks and variables other thwi. x. The satisfaction automaton
blocks if anay disjunction contains only F and -T after truth-values have been substituted for the
variables; thus the satisfaction automaton will end up in a filial state only if the truth-values
that have been assigned satisfy every disjunction and hence ip.

The net result of the constraints imposed by the consistency and satisfaction automata
is that some surface string can be generated from a just in case the original formula 'p has
a satisfying truth-assignment. Furthermore, the pair (A.o) can be constructed in time poly-
nomial in the length of p; thus SAT is polynomial-time re(uced to KIMMO GENERATION,
and the general case of KIMMO GENERATION is at least as hard as SAT. Figure 11 traces
the operation of the KIMMO generation algorithm on a satisfiable formula; note that the gen-
erator goes through quite a bit of search even though there turns out to be only one answer.
Figure 12 shows what happens with ani unsatisfiable formula.

4.3. KIMMO Recognition is NP-Hard

Like the generator, the KIMMO recognizer can be useiid to solve comlitationally diffi-
cult problems. KIMMO recognition and KIMMO generation are both A/Z--hard. To treat the
recognfizer f'rnially. define a possible instance of the coiriutatioin;d problem KIMMO RECOG-

NITION vs a.ny triple (A. D.a). where A anl are iLs before, aznl D is the dictionary compo-

nent of t, KIMM() system described ;L specified in Gajek rt al. (1983). Au actiml instance of

KIMM() IIE('O(NITI()N will be any possible instance (A, D.a) such that for somiv a'. (i) the
hxical surfac pair ry'/a satistics tlie constraints iniposed by thlie aoitwn t a in A as before,
and (ii) a' cal ie gettrated by the dict ionary component D. 'Ths (A. 1). e7) is an instance of

II
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Gene~rating from lexical form -xy.-yi.-y-1.Ay1".
1 1 1. 1.1.3 38 + -FF.-FT.-F-T.FFT 3.3.,22

*2 -F 3,1,1.2 39 "-FF.-FT,-F-TFFT" * result
3 -FF 3,3.1.2 40 (3) -FT 3.2.1.2
4 -FF, 3.3.1.1 41 -FT, 3.2.1.1

6 -FF.- 3.3.1.3 42 -FT.- 3.2.1.3

6 -FF.-T XXX Y-con. 43 -FT. -F XXX y-con.
7 +-FF.-F 3.3.1.2 44 + -FT.-T 3.2,1,1
8 -FF.-FF 3.3,3.2 45 -FT,-TF 3.2,3.1
9 -FF.-FF, 3.3.3.1 46 -FT.-TF, XXX satis.

10 -FF.-FF.- 3.3.3.3 47 (45) -FT.-TT 3,2,2,2
11 -FF.-Ff.-T XXX y-con. 48 -FT.-TT, 3.2,2.1
12 + -FF,-FF.-F 3.3.3.2 49 -FT,-TT,- 3.2.2.3
13 -FF.-FF.-F- 3.3.3.2 50 -FT,-TT.-F XXX Y-con.
14 -FF,-FF,-F-T XXX i-con. 51 + -FT.-TT,-T 3,2.2.1
15 + -FF,-FF.-F-F 3.3.3.2 52 -FT,-TT.-T- 3.2.2.3

.4.16 -FF,-FF.-F-F. 3.3.3.1 53 -FT.-TT,-T-F XXX z-con.
17 -FF,-FF.-F-F,T XXX K-con. 54 + -FT.-TT.TT 3.2.2,1
18 + -FF,-FF,-F-F,F 3.,3.1 55 -FT,-TT,-T-T. XXX satis.
19 -FF,-FF.-F-F.FT XXX y-con. 56 (2) -T 2,1,1.1

4-20 + -FF,-FF,-F-F.FF 3.3.3.1 57 -TF 2.3.1.1
21 -FF.-FF,-F-FFFT XXX i-con. 58 -TF, XXX satis.
22 + -FF,-FF.-F-F,FFF 3.3.3.1 59 (57) -TT 2.2,.2
23 -FF, -FF,-F-FFFF XXX satis. nf. 60 -TT, 2,2,1.1
24 (8) -FF.-FT 3.3.2.2 61 -TT.- 2.2.1.3
25 -FF,-FT. 3.3.2.1 62 -TT.-F XXX y-con.
26 -FF,-FT.- 3.3,2.3 63 + -TT.-T 2.2.1,1
27 -FF.-FT,-T XXX Y-con. 64 -TT.-TF 2.2.3.1
28 +-FF -FT.-F 3.3.2.2 55 -TT.-TF, XXX satin.
29 -FF,-FT,- F- 3.3,2.2 66 (64) -TT,-TT 2,.2,2
30 -FF,.-FT.-F-.F XXX Z-con. 67 -TT,-TT, 2.2,2.1
31 + -FF,-FT. -F-T 3.3.2.2 68 -IT, -TI, - 2.2.2.3
32 -FF.-FT.-?-T, 3.3.2.1 69 -Tl,-TT, -F XXX y-con.

*33 -FF, -FT,-F-T.T XtX X-con. 70 + -TT,-TT,-T 2.2.2.1
34 + -FF,-FT.-F-T.F 3.3.2.1 71 -TT,-TT,-T- 2.2.2.3
35 -FF,-FT,-F-T.FT XXX y-con. 72 -T-TT.-T-F XXX z-con.
36 + -FF.-FT,-F-T.FF 3.3.2.1 73 + -TT,-TT.-T-T 2,2.2,1
37 -FF. -FI,-F-T.FFF XXX z-con. 74 -TT. -TT.-T-T. XXX satis.

(--FF.-FT.-F-T.FFT-)

Figure I I: The Kim MO generator systemn of Figure 10 goes through these steps when applied to the
encoded version of the (satisfiale) fornmula (I V y,)&(p V z)&(p V '_)&(x V y V z). Though only one

* truth-as-ignmniit will satisfy the formuila, it .takes4 quite at bit of backtracking to find it. The notation
USed here for describing generator actions is similar to that used to describe recognizer actions in
Figure 2. but a surface rather than a lexical string is the goal. As in figure 7, a -- entry in the
backt racking colunin inidicates backtracking front ant immediate failure in the preceding step, which

% .~ does not require the imili backtracking miechianism to be invoked.

KIMMO RECOGNITION if a is a recognizable word according to the constraints of A and
D.

Many reductions are possible. but the reduction that will be sketched here uses the 3SAT

p~rob~lemi iik~tV.L( of SAT. It also uses all encodhinig for CNF formulas that is slightly different
fromn the( one( uIsed( in the gene(rator redumctioni. To enicode a SAT' problemn p as a triple (A, D, a),
first const rlct a from V by a new notational translation. This time, treat a Variable x and
its negation Y as separate. atomic characters. C'ontinue to Use a conmma for conjunction and

11o exp~licit ope'rator for disjunction. but now add at pe'riodl at the( end of the formutla. Then
the a correspondiing to tit(, formuatla (i V x V y)&(y V # V Z)&(x V Y V Z) is j~y ,~Yz xyz.,

ait .4ring of' 12 characters. (With 3SAT. the commas are redundant, but thJ(,y are retained here

in the interest of readability.)

Secondc. construct A (in polyiinial tiliie) in two parts. (As before. A varies from formula

ito forniia onily When the formlulas- involve' differenit Aets (it variables.) The( alphabet spceifi-

cation shioutld list the variables4 ill ea togethler WillIi themir negat ions aid~ tie( special characters

T. F. conima. ;uiul pe~riod. The equals sign slhuld again be d(chtreml as the KIMMO wildcard

character. The' consistency autouilata, %till oil(e foir each variable ii a7. should be constructed
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Generatln~ from lexical farm "xyz. -i-i,-xi, -y-z,-yz, -zy".
13.1.1.1 71 FT,-! XXX A-con.

2 PP 3.3.1,1 72 + FT-F 3,2,2,2
3 FFF 3.3,3.1 73 FT-F- 3.2.2,2
4 FFF, XXX Satls. 74 FTI,-F-F XXX i-con.
5 (3) FF1 3.3.2,2 75 + FTT,-F-T 3.2.2.2
8 FFT. 3,3.2.1 76 FTI,-F-I. 3,2.2.1
7 FFT,- 3.3,2.3 77 FTI, -F-I, - 3.2,2.3
8 FFT.-T XXX A-con. 78 FIT,-F-T,-T XXX A-con.
9 + fF.4F 3.3.2.2 79 + F11,-F-I -F 3.2,2,2
10 FFT, -F- 3.3,.2 80 FT, -F-I, -FF XXX i-con.
11 FFT.-F-F XXX i-con. 81 + FT-F-I.-FT 3,2.2.2
12 + FF1.-- 3.3,2.2 82 FTI,-F-I,-FT, 3,2,2.1
13 FFT.-F-T, 3.3,2.1 83 FTT,-F-T,-FT,- 3,2.2.3

1 4 FF1,-FT,- 3.3,2.3 84 FTI,-F-I,-FT,-F XXX y-can.
is FFT,-F-1,-T XXX x-con. 85 + FTT,-F-T.-FT,-T 3,2,2.1
16 + FFT,-F-T,-F 3.3,2.2 86 FTT.-F-I.-FI,-I- 3.2.2,3
17 FFT,-F-T.-FF XXX i-can. 87 FT-F-I, -Fl,-I-F XXX i-con.
18 + FFT,-F-T,-FT 3.3,2.2 88 + FTI.-F-I,-FI.-T-T 3.,2,1
19 FFT.-F-T,-FI, 3.3,2,1 89 FT-F-I, -FT,-I-I. XXX sais.
20 FFT.-F-T.-FT,- 3.3.2.3 90 (1) T Z.1.1.2
21 FFT.-F-T.-FT,-T XXX y-con. 91 IF 2.3.1,2
22 + FF1, -F-I. -FT, -F 3.3,2.2 92 TFF 2.3,3,2
23 FFI.-F-I,-FT,-F- 3.3.2,2 93 1FF, 2.3,3.1
24 FFT.-F-I.-FT,-F-F XXX i-con. 94 1FF,- 2.3,3.3
25 +. FFT.-F-I,-FT,-F-I 3.3,2.2 95 TFF,-F XXX K-con.
26 FF1,-F-I, -FT.-F-I, 3.3.2.1 96 + 1FF,-T 2,3.3.1
27 FFT.-F-T.-FI.-F-T,- 3.3.2,3 97 TFF,-I- 2.3.3.3
28 FFT.-F-T.-FT,-F-I,-1T XXX y-con. 98 1FF, -T-T XXX i-con.
29 + FFT,-F-T.-FT,-F-T,-F 3,3,2,2 99 + TFF,-T-F 2.3,3,2
30 FFI.-F-I,-FT,-F-T.-FF XXX i-con. 100 TFF,-T-F, 2.3.3.1
31 + FFT,-F-T.-FT,-F-T.-FI 3.3.2,2 101 1FF, -1-F,- 2.3.3.3
32 FFT.F-.-FT,-F1,.F, 3.3.2,1 102 TFF,-T-F.-F XXX A-con.
33 FFT,-F-I.-FT,-F-T,-FI,- 3.3,2,3 103 + TFF,-T-F.-T 2,3,3.1
34 FFT.-F-T.-FT,-F-T,-FT,-F XXX i-can. 104 TFF,-T-F,-TT XXX i-con.
35 + FFT.-F-I,--FI,-F-I,-FT,-I 3,3,2,1 105 + TFF,-T-F.-TF 2,3,3,1
36 FFT,-F-T, -FI,-F-I.-FT.-TT XXX y-con. 106 TFF,-T-F.-TF, XXX sais.
37 + FFT,-F-I,-FT,-F-I,-FT,-TF 3.3.2,1 107 (92) TFT 2.3,2,2
38 FFT,-F-I,-FT,-F-I,-FT,-TF XXX satis. nf. 108 IFT, 2.3.2.1
39 (2) FT 3.2.1.2 109 IFT,- 2.3.2.3
40 FTP 3,2.3.2 110 IFT, -F XXX s-can.
41 FTP, 3,2.3.1 1l1 + IF!,-T 2.3.2,1
42 FIF,- 3.2,3,3 112 TFI.-T- 2.3.2.3
43 FTP,-! XXX i-con. 113 TFT,-T-P XXX i-can.
44 + FIP,-F 3,2,3.2 114 + IFT, -T-1 2,3,2.1
45 FTP,-F- 3.2.3.2 115 IFT,-T-I, XXX saIs.
46 FTP,-F-T XXX i-can. 116 (91) TT 2,2,1.2
47 + FTF,-P-F 3.2,3,2 117 ITF 2.2,3,2
48 FIF.-F-P. 3.2.3.1 118 TTF, 2.2.3.1
49 FTP,-F-F.- 3,2,3.3 119 TTF,- 2.2.3,3
50 FTP,-F-P,-T XXX n-con. 120 TIF,-P XXX i-can.
51 + FIP,-F-P,-F 3,2.3,2 121 + TIP,-I 2,2.3.1
52 FIF,-F-F,-FT XXX i-con. 122 TIF, -1- 2.2.3.3
53 + FIF, -F-F,-FF 3.2.3.2 123 IIF,-I-T XXX i-con.
54 FTF,-P-F,-FF, 3.2.3,1 124 + TIF,-T-F 2,2,3,2
55 FTP,-P-P.-FF,- 3.2.3,3 125 TTF,-T-F, 2,2,3.1
56 FIF,-F-F. -FF,-F XXX y-con. 126 TTF, -I-F.- 2,2.3.3
57 + FIF,-F-F.-FF.-I 3.2.3.1 127 TIF, -I-F-F XXX i-con.

458 FIP.-F-F.-FF,-1- 3.2.3.3 128 + IIF,-1-F,-T 2.2.3.1
59 FIF.-F-F.-FF,-I-T XXX i-con. 129 TIF.-I-F.-II XXX i-can.
60 + FIF.-F-F.-FF.-T-F 3,2.3.2 130 + lIP, -I-F,-IF 2,2.3.1
61 FTP.-F-F,-PF.-T-P, 3,2.3.1 131 IIF, -I-F,-IF. XXX saIs.
62 FTF,-F-F,-FF, -I-F,- 3.2.3.3 132 (117) ITT 2,2,2.2
63 FTF.-F-FFF.-I-F.-F XXX y-con. 133 TIT, 2,2.2.1
64 + F1F.-F-F.-FF,-I-F,-T 3.2.3.1 134 ITT,- 2,2.2.3
65 FTF.-F-F.-FF.-I-F.-TI XXX 7-con. 135 111,-F XXX n-con.
66 + F1F,-F-F,-FF.-T-F,-TF 3.2,3.1 136 + TT-I 2.2,2.1
67 FTF,-F-F.-FF.-T-F, -IF, XXX irtis. 137 TIT, -T- 2,2.2,3
68 (40) FIT 3.2.2.2 138 111.-I-F XXX i-con.
69 FT, 3.2.2.1 130 + 111,-I-I 2,2,2.1
70 FIT,- 3.2.2,3 140 111,-I-I. XXX Satis.

NIL.

Figure 12: The~ KIM MO generator systemi of' Figiire 10 goes thronig 140 steps before verifying tha-t the
fonanla (r V y V -)&(x V Z)&(i V z)&( V Zw)&(y V Z&iV y) ban TDO satisfyinlg troth-wssignmnt.
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"x-consistency" 3 6

T T F F = (lexical characters)
z T z = (surface characters)

1: 2 3 3 2 1 (x undecided)

2: 2 0 0 2 2 (z true)
3: 0 3 3 0 3 (x false)

Figure 13: The KIMMO recognizer system that encodes a 3SAT formula , should include a consistency
automaton of this form for every variable z that occurs in o. As in the generator reduction, the
consistency automaton constrains the mapping from variables to truth-values, ensuring that the value
-,signed to Z is consi-tent throughout the fornmula. However, in the recognizer reduction the automaton
monst also ensure that the values assigned to x and x are opposites, since x and Y are treated as atomic
alphabet characters.

ALTERNATIONS
Root = Root

( Punct Punct )
(#s )

END

LEXICON Root TTT Punct "";
TTF Punct
TFT Punct
TFF Punct
FTT Punct
FTF Punct "";

FFT Punct "" - --

LEXICON Punct Root

END

Figure 14: The 3SAT recognizer system for any formula should include this dictionary component,
which en.sures that the truth-values .Lsigned to the variables in the surface string will cause the

formula t, coi out true. All combinations of three truth values are listed, except for the value FFF
that would cause one of the 3CNF disjunctions to be flse: the saxnoe dictionary component is used for

aJ 3SAT proble'ns. 1,ach lexicon entry specifies the continuation class of lexicons that can follow. For
izintancc. the class Punct containing only the lexicon Punct is the continuation class of TTT, while the
ela s of . is the empty continuation class #. "" is an euipty feature set, used since no word features

are being recovered in this mathematical reduction. The detailed format of the dictionary component
is described in Gajek et al. (1083).

as in Figure 13. There is no satisfaction automaton in this version of the recognizer.

Finally. take D as a constant from Figure 14. In this reduction, D imposes the satisfaction

constraint that waLs enforced with an automaton in the generator reduction. Formula Wp will

be sat isfied iff all of its conijuncts axe stisfied, aid since 0 is in 3CNF, that means the truth-

v;dues ,,ssigned within each disjunction must be TTT, TTF, . or any combination of three

troth-v;dues except FFF. This is exactly the constraint imposed by the dictionary. (Note that

D is the same for every 3SAT problem; it does not grow with the size of the foirmula or the

iuniiber of variables.)

Coimpared to the generator reduction. the roles of the lexical wuud surface strings are
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reversed in the recognizer reduction. The surface string encodes p, while the lexical string
indicates truth-values for its variables. The consistency automaton for each variable z still

ensures that the vdue mssigned to z is consistent throughout the formula, but now it also

ensures that x and : are asigned opposite values. As before, the net result of the constraints
imposed by the various components is that (A, D.a) is in KIMMO RECOG NITION just in

case p has a satisfying truth-assignment. The general case of KIMMO RECOGNITION is at

least as hard as 3SAT, hence at least as hard as SAT or any other problem in /P (in the
sense of polynomial-time reduction).
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5. The Effect of Precompilation

The reductions presented in section 4 require both the langaage description and the input
string to vary with the SAT/3SAT problem to be s,)lved. Hence, there arises the question

of whether sonic conlputationally intensive form of precompilation could blunt the force of
the reduction, paying a potentially exponential compilation cost once and allowing KIMMO
runtimc for a given grammar to be uniformly fast thereafter. This section examines four
aspects of the precompilation question.

5.1. Conversion to GMACIIINE/RMACHINE Form

The external description of a KIMMO automaton or lexicon is not the same as the form
that is used by the generation or recognition algorithm at runtiie. Instead, the external de-
scriptions are used to construct internal forms: RMACIHINE anld (MACHINE forms for automata,

a id letter trees for lexicons (Gajek et al., 1983). Hence one question to address is whether the
complexity implied by the reduction might actually apply to the construction of these internal

forms. If this were true, then the complexity of the generation problem (for instance) would
be concentrated in the construction of the "feusible-pair list" alld the GMACHINE.

It is possible to deal with this question directly by reformulating the reduction so that the
formal problems ad the construction specify maclihies in terms of their internal (e.g. GMA-

CHINE) forms instead of their external descriptions. The GMACIIINEs for the class of machines
created in the construction have a very regular structure, and it is easy to build them directly

instead of building descriptions in external format. As Figure 11 also suggested, it is runtime
processing that makes translated SAT problems difficult for a KIMMO system to solve.

5.2. BIGMACHINE Precompilation

There is also another kind of preprocessing that might be expected to help. As men-
tioned in section 2.1.2, it is possible to compile a set of KIMMO automata into a single large
automaton that will run faster than the original set. The system will usually run faster with
one large automaton than with several small ones, since it has only one machine to step and
the speed of stepping a machine is largely independent of its size. However, in the worst case

the merged automaton is prohibitively large, exponentially larger than the smaller machines
(Karttunen. 1983:176).

Gaick ct al. (1983) use the terms BIGGMACHINE and BIGRMACIIINE to refer to the gener-

%at ion and recognition versions of a large merged automaton, and therefore such an automaton
will be called a '31GMACHINE. Since it can take exponential time to build the BIGMACHINE
for a translated SAT problem, the reduction formally allows the possibility that DIGMACHINE
precouipilation could make runtime processing uniformly efficient.

However, an expensive BIGMACH1NE precomlpilation step doesn't help runtime processing
enmolmgh to, change the fundamental complexity of the algorithms. Recall from section 3.3 that

the nitun ingredients of KIMMO runtime complexity are the mechanical operation of the au-
tomiata. the difficulty of finding the correct lexical surface correspondence, and the necessity
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of choosing among alternative lexicons. BIGMACHINE precompilation will speed up the me-
chanical operation of the automata, perhaps by a factor equal to the iumber of variables in
the SAT query. However, it will not help in the task of deciding which lexical/surface pair will
be globally acceptable. The BIGMACHINE will be i., limited ais the equivalent automata in its
forecasting abilities. Precompilation oils the machinery, but doesn't accomplish fundamental
redesign.

5.3. BIGMACHINE Size and the Interaction of Constraints

BIGMACHINE precompilation sheds light on another precompilation question as well. It
is known that the compiled BIGMACHINE corresponding to a set of KIMMO automata can be
exponentially larger than the original system in the worst case; for example, such blowup
occurs if the SAT automata are compiled into a BIGMACHINE. In practice. however, the size
of the BIGMACHINE varies - thus naturally raising the question of what distinguishes the
"explosive" sets of automata from those that behave wore tractably.

It is sometimes suggested that the degree of interaction among constraints determines
the amount of BIGMACHINE blowup. In this view, a large BIGMACHINE for a SAT problem is
no surprise, for the computational difficulty of SAT and similar problems results in part from
their "global" character. Their solutions generally cannot be deduced piece by piece from
local evidence; instead, the acceptability of each part of the solution may depend on the whole
problem. In the worst case, the solution is determined by a complex conspiracy among the
constraints of the problem. Thus the large BIGMACHINE gives a more "honest" estimate of
problem difficulty thl the small collection of individual automata.

However, a slight change in the SAT automata demonstrates that BIGMACHINE size need
not correspond to the degree of interaction anong the automata. Eliminate the satisfaction
automaton from the generator system, leaving only the consistency automata for the variables.
Then the system will not search for a sati.mfyinq truth-assigment. but merely for one that is
internally consistent - that is, one that never assigns both T and F to the same variable in its
different occurrences. This change will entirely eliminate the interactions anong the automata;
each automaton is concerned only with the assigninents to its particular variable, and there is no
way for an assignment to one variable to influence the acceptability an assignment to another.

Yet despite the elimination of interactions, the BIGMACHINE must still be exponentially
larger than the collection of individual automata. Since the states of the BIGMACHINE must
distinguish all the possible truth-asfsignments to the variables, its size must be exponential in
the inmber of individual automata. In fact. the lack of interactions can actually increase the

inunber of states in the BIGMACHINE. Interactions unong the automata const rain the com-
binations of states that call be reached, thus redllcing the nunber of accessible combinations
below the mathematical upper limit.

5.4. Transducers and Determinization

One more precompilation (puestion is whether the nondeterlninimi involved in constructing

the lexical surface correspondence can't be removed by standard determinization techniques
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"S)

S z/x/b

Figure 15: This nondeterininistic finite-state transducer cannot be determinized. An equivalent de-
terministic FST would have to wait for the end of the input string before generating any output.
However, at that point it would have to relmember how miany as or bs to output in correspondence

, with the unbounded number of zs in the string - an impossible task for a finite-state device.

[ " for finite-state machines. After all, every nondeterministic finite-state machine has a deter-
ministic counterpart that is equivalent in the sense that it accepts the same language.' 5 Aren't

'S KIMMO automata just ordinary finite-state machines operating over an alphabet that happens

to consist of pairs of characters?

It is indeed possible to view KIMMO automata in this way when they are being used to
verify or reject hypothesized pairs of lexical and surface strings." However, in this use they
don't need (leteriiinizing: they are already deterministic, for there is only one new state listed

, in each cell of the description of a KIMMO automaton. In the cases of primary interest -
generation and recognition -- the machines are being used as genuine transducers rather than
acceptors.

The determinizing algorithms that apply to finite-state acceptors will not work on trans-
ducers. Indeed. many finite-state transducers are not determinizable at all. For example,
"onsider the transducer in Figure 15. On input xxzzxa it must output aaaaaa, while on input
xxxx.b it must output bbbbbb. An equivalent deterministic finite-state transducer is impossible.
A deterministic transducer could not know whether to output a or b upon seeing z. However,
it also could not output nothing md put off the decision until later: being finite-state, it would
not in general be able to remember at the end how many occurrences of x there had been, so
it would not be able to print the right number of initial occurrences of a or b.

S"For similar reasons, there is no way to build deterministic finite-state transducers for the
SAT problenms. Upon seeing the first occurrence of a variable, a determinist ic transducer could
not know in general whether it should output T or F. However. it also could not wait and output
a trulh-v;due later, for there might be an unbounded number of occurrences of the variable

.i.t not in t he sense that it assigns the sani parses to the strings of the language, where a parse according to
a tiniti-st ate machine is the sequence of states traversed a point related to the inkpossihility of determininsing
trAMSLisdcers.6 This statement ignores any suhtleties having to do with the processing of nulls, which will he discussed

.*

10 -6 lter (§iD).
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before there was sufficient evidence to asign the truth-value. A finite-state transducer would
not be able in general to remember how many truth-value outputs had been deferred.
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6. The Effect of Nulls

Since KIMMO systems can encode A P-complete problems, the general KIMMO generation
and recogition problems are at least as hard as the computation.illy difficult problems in
A P. But could they 1e even harder? The answer depends on whether null characters are
allowed. It mill characters are forbidden, the problems are in NP, hence (given the previous
N P-hardnvr s result) 3/P-complete (qG.1). If null characters are completely unrestricted, the
proldhins are IPSPACE-complete, thus potentially even harder than the problems in N P (§6.2).
However, the full power of unrestricted mill characters is not needed for linguistically relevant
proce.sinmg. Continuing to explore the effect of KIMMO null characters, section 6.3 mentions a
subtl point with computational consequences - about the interpretation of the KIMMO

constraint-intersection operation when nulls are involved.

6.1. AP-Completeness Without Nulls

The generation and recognition problems for KIMMO automata without nulls are NP.
complete. Since section 4 showed that the problems were NP-hard, all that remains is to
show that a nondeterministic machine could solve them in polynomial time. Only a sketch of
the proofs will be given.

Given a possible instance (A.a) of KIMMO GENERATION, the basic nondeterminism
of the machine can be used to guess the surface string corresponding to the lexical string a.
The automata can then quickly verify the correspondence. The key fact is that if A allows no
wills, the lexical and surface characters must be in one-to-one correspondence. The surface
.string must be the same length as the lexical string, so the size of the guess can't get out of

hand. (If the guess were too large, the mnachine would not run in polynomial time.)

Given a possible instance (A. D,a) of KIMMO RECOGNITION, the machine should

guess the lexical string instead of the surface string; as before, its length will be manageable.17

Now, however, the machine must also guess a path through the dictionary. The number of
choice points is limited by the length of the string,' 8 while the number of choices at each point
is limited by the number of lexicons in the dictionary. Given a lexical-surface correspondence

and a lexicon path, the automata and the dictionary component can quickly verify that the

lexical/surface string pair satisfies all relevant constraints.

7 When wills are allowed as in the next section. the machine must also guess where to insert 0 characters into

J,- the surface string. Because of the way the automata operate, the strings that are submitted to the automata

for verification must include the nulls.
*"~ INills in the lexicon do not have the sarne interpretation as ills in the automata. Nulls should not occur

in the dictionary, except in "null lexicon entries" that are written as 0 in their entirety. Unlike nulls in the

autmunaton com1ponent, which are treated a-s genuine charactrs by the automata, null lexicon entries are merely
a notational device amd can be removed in the course of constructing letter trees from the lexicons. Thus the
number of choice points in the lexicon data-structure is lindted by the length of the lexical string even when

nulls are permitted.

28

.K?%r . -o



6.2. PSPACE-Completeness with Unrestricted Nulls

If nulls are completely unrestricted, the arguments of sectin 6.1 do not go through. The
problem is that unrestricted null characters allow the lexical and surface strings to differ wildly
in length. The time it takes to guess or verify the lexical- surface correspondence may no longer
be polynomially bounded in the length of the input string.

hi fact, it is easy to show that KIMMO RECOGNITION with unrestricted null characters
is PSPACE-complete - at least as hard as any problem that can be solved in polynomial space.
Though the question is open, PSPACE-complete problems are likely to be even harder than
N P-complete problems.

Not only is a PSPACE-complete problem not likely to be in P, it is also not likely to
be in VIP. Hence a property whose existence question is P)SPACE-counplete probably
cannot even be verified in polynomial time using a polynomial length "guess." (Garey
and Johnson, 1979:171).

Thus the worst case of KIMMO RECOGNITION becomes extremely difficult if null charac-
ters are completely unrestricted. (Incidentally, PSPACE includes such problems as deciding
whether a player ha-s a forced win from certain N x N checkers or Go configurations.1° )

The easiest PSPACE-completeness reduction for KIMMO RECOGNITION with unre-
stricted nulls involves the computational problen FINITE STATE AUTOMATA INTERSEC-
TION (Garey and Johnson, 1979:26G). A possible instance of FSAI is a set of deterministic
finite-state automata over the same alphabet. The problem.is to determine whether there is
any string that is accepted by all of the automata. Given a set of automata over alphabet
E, construct a corresponding KIMMO RECOGNITION problem as follows. Let a and b be
new characters not in E, and take the KIMMO alphabet to be E U {a, b).o Declare = as the
wildcard character and 0 as the null character.

Then build the rest of the automaton component in two parts. First, include the following
"main driver" automaton:

"Main Driver" 3 3
a b = (lexical characters)
a b 0 (surface characters)

1. 2 0 0 (want a)

2. 0 3 2 (let automata run)
3: 0 0 0 (got ab; final state)

This will accept the surface string ab. allowing arbitrary lexical gyrations between a and b
as long ws they come out null on the surface. Second, for each of the automata in the FSAI
problem, translate it directly into a KIMMO automatoll by pairing the original characters from
E with surface nulls. Also add colummis for a/n id b/b. with entries zero unless otherwise
spe(ified. Bump all of the state nuumohers up by two. Let the new start state accept only a/a.

1"A few restrictions on the proberi are necessary in order to show uiniebtrshlip in PSPACE. For details.
, Garey and Jljzisu. (1979:173.256f) iuitl referujt es citcd therein.
:"The r'd uction Cnui ;Jlo he d -ni witt it a iU ti .1 It tliy ,Lrv inctudd 1c caise the resulting red iction is

more reminiscent of ordin.iry processiig problh.nis in which tht, 4ies
t

ioni lriM,'M of how 1114111y 1111lL. to hylothWesize
betwecn cliaracters.
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going to 3 (the old start state). Let only state 2 be a final state, but for every state that was
finial in the original automiaton, give it a transition to 2 on b/b.

Third, let the root lexicon of the dictionary component contain a lexicon entry for each
single character in E U {a. b}. The continuation class of each entry should send it back to the
root lexicon, except that the entry for b should list the word-final continuation class # instead.

Finally, take ab as the surface string for the KIMMO RECOGNITION problem. Surface a
will start up the translated versions of the original automata, which will be able to run freely
in between the a and the b because the characters in E all get paired with surface nulls. If

there is sonic string that all of the original automata accept, that lexical string will send all of
the translated automata into a state where the remaining b is acceptable. On the other hand,
if the original intersection is empty, the b will never become acceptable and the recognizer will
not accept the string ab.

This construction forms one half of the PSPACE-completeness proof, but it is also nec-
essary to show that KIMMO RECOGNITION is no harder than problems in PSPACE. It
is sufficient to transform arbitrary KIMMO RECOGNITION problems into FSAI problems.

Given a recognition problem, first convert the dictionary component into a large automaton
that (i) constrains the lexical string in the same way the dictionary component does, pairing

lexical characters with surface wildcards, but (ii) allows nulls to be inserted freely at the lex-
ical level, in case the other automata permit lexical nulls. The conversirn can be performed
because the dictionary component is finite-state. Second, convert the input string into an
automaton as well. The input-string automaton should (i) constrain the surface string to be
exactly the input string, but (ii) allow surface nulls to be inserted freely. Third, expand out
all wildcard and subset characters in the automata, then interpret each lexical/surface pair
at the head of an automaton column as a single character in an extended alphabet. Given
this preparation, it is possible to solve the original recognition problem by solving FSAI for
the augmented set of automata. Since the input string is now encoded as an automaton,
the intersection of the languages accepted by all the automata consists of all the permissible

lexical -surface correspondences that reflect recognition of the input string. The intersection
will he nonemnpty - as FSAI tests - if and only if the input string is recognizable.

The PSPACE-completeness proof shows that if null characters are completely unrestricted,
it can be very hard for the recognizer to reconstruct the superficially null characters that may

lexically intervene between two surface characters. However, unrestricted nulls surely are not
needed for linguistically relevant KIMMO systems. Processing complexity can be reduced by
aumy restriction that prevents the number of possible nulls between surface characters from
getting too large. As a crude approximation to a reasonable constraint, the above reduction

could be nled out by forbidding entire lexicon entries to come out null on the surface.21 A
sIitable restriction would make the KIMMO generation and recognition problems only )IP-
complete rather th; PSPACE-complete.

21 Recall from footnote 18 that aui entry "0" in the dictionary is not the same as a dictionary entry that is

entirely deleted at the surface by the automata.
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6.3. The Intersection of Constraints

The null characters (0) that can appear in a KIMMO automaton allow the recognizer to
advance without consuming any characters from the input word. For example, in analyring the

word hoed as hoe~ed, the automata advance as if the surface string were ho00ed (see Karttunen
and Wittenburg, 1983:220), postulating surface nulls freely as required by the constraints of
the system. However, the interpretation of 0 as the empty string involves some subtlety when
multiple constraints are involved.

Internal to a KIMMO automaton, 0 is treated the same as any other character, but 0 is

effectively deleted at the interface to the suirface string or the dictionary component. Abstractly
speaking, the treatment of nulls by the KIMMO recognizer involves two stps: (i) null characters
are inserted freely into the surface string to produce a form like hoOed: (i) this augmented
string is used to run the automata. Thus, a KIMMO automaton can be considered to define
both an internal constraint (relating the augmented strings with 0 characters inserted) and

an external constraint (relating the strings as they stood before 0-insertion).

This distinction becomes important when there is more than one automaton in a KIMMO
system. The notion of "satisfying every constraint" could refer to intersecting either the
internal or the external versions of the constraints defined by the automata. If the external
languages are intersected, different automata can disagree about the placement of nulls. (This
corresponds to interpreting null characters as ordinary empty strings (epsilons, c), since the
number of occurrences of the empty string between any two characters is indeterminate.) On
the other hand, if the internal forms of the constraints are intersected, all the automata must
agree on the number of nulls and their positions.

The actual KIMMO system performs internal intersection of the constraints defined by the
automata. Ron Kaplan" has pointed out that this subtle distinction in the interpretation of
KIMMO nulls has computational consequences. If the various constraints of a KIMMO system
were subject to external rather than internal intersection. thus interpreting KIMMO nulls as
ordinary epsilons, then IIGMACHINE precompilation would not be generally possible.

Since BIGMACHINE precompilation produces a single large finite-state transducer as out-
put, the intersection operation that it implicitly implements must always map finite-state
constraints into finite-state constraints. External intersection does not have this property, and
therefore BIGMACHINE prevornpilation would not be generally possible if external intersection
were used. Specifically, Kaplani has called attention to the following finite-state relations over

lexical-surface pairs:
A = (a/b)'(0/c)"

and D = (0/b)*(a/c)"

Each of these relations is easy to encode in a KIMMO automaton. but their external intersection

A n B = {a"/b'c"}

cannot be defined by any KIMMO automaton. large or small, despite its finite-state origins.
22
K tpbucs rrmarks werv Itodc in a tLlk pre.mnted to th i W ,rk op oin Finitc-State Morphology, Center for

.:_4 the Study of Lumguage aid lIformation, Stanford University. July 20 30, 1085.

31

o-

-~ ,9,



This example makes crucial use of the fact that external intersection allows different
automata to disagree about the placement of nulls; under internal intersection (e.g. in the
current KIMMO system) no nontrivial lexical-surface pair satisfies both of the constraints. For
instance, A will reject the external string pair aa/bbcc except as aaOO/bbcc, while B will
reject it except as OOaa/bbcc. Since internal intersection requires all automata to agree about
the placement of nulls, aa/bbbb will be rejected under internal intersection.

-. ' The computational consequences of the distinction between internal and external inter-
section b~ecomfe more severe when KIMMO systems ari! generalized slightly. For example, if
KIMMO automata are generalized to use three levels instead of two, and if certain other small
changes are made, then the recognition problem becomes computationaly undecidable under
external intersection (Barton, 1985b).
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7. Improving KIMMO Dictionary Efficiency

One final matter remains. Despite the fact that navigation through the lexicons of the
dictionary component can account for quite a bit of backtracking in the currenit KIMMO system,
the previous sections gave little attention to that problem. Instead, section 3.3.2 promised that
the dictionary component could be changed in such a way that most of the choice points would
be eliminated. This section explains how.

7.1. Subdivisions of the Dictionary

Naturally, there would be no need to choose anmong alternative lexicons if the dictionary
were not sul)divided. In the existing KIMMO system, subdivisions arc nleeded for two reasons.
First, the continuation-class mechanism is the only nmans for expressirg co-occurrence restric-
tions aanong roots and affixes. and a continuation class is a set of lexicons. Second, incorrect
dictionary search paths can be recognized and pruned more quickly when suffixes are stored
separately from roots.

The existing continuation-class mechanism makes the lexicon tire finest unit of discrimi-
nation between suffixes. If a, x, y are dictionary entries such that the sequence ax is possible
but ay is not, this constraint will be inpossible to capture unless x and y are listed in separate
lexicons; if they are in the same lexicon, it will be impossible for the continuation class of
a to include x but not y. Thus the need to express co-occurrence re.trictions leads to the
use of multiple lexicons. For example. Kitrttunen and Wittenburg (1983:224) must list -ed
and -er in separate lexicons because of such contrasts as doer/*doed. In the special case
of separated dependencies, the weakness of the current cont inuat ion-class mechanisn leads
to a large amount of duplicated structure in tile multiple lexicons that must be constructed
(Karttunen, 1983:180).

Small lexicons are also advantageous for pruning search. since it can become apparent
very early that no acceptable suffix starts out with the letters at hand. For iwitancc. if none of
the suffixes that can attach to the current word start with a, it is pointless to search beyond
an a in the input (ignoring spelling-change rules her.). If the legal sciflixe's for tire' ,irrent
class of word are stored in a separate lexicon, the letter-tre( veruion cif tie lexicon will not
be searched beyond an a. However, if they are listed witli many other sciflixi' -uc h it -able,
the search will not be aborted until later - possibly not tintil 014 c ,, a rdflix. whevn tile
combinatory features of the suffix can be ciiecked.

Unfortunately, multiple lexicons slow analysis down jiite a hIn itrm thc rrent wrsion
of KIMMO. Each of the lexicons in a cnntimirtion chess is ,.trlhd sc-,cr. , ly Tic first fe-w
characters beyond a lexicon choice point tciil to get reanalyzl scvcr;. It,,cc. wVt it thLit pirtionl
of the lexical surface corresipondence worked owit cdre-si c ( ill(, If r, q ,i wv arc t rlis (N.
V, EtC.} instead rf sulhxee tlict is, if it is a pre-lix thr-t ltc r,,,ct lexi ci ct .,1114 ,,d sic ,,ivhird
In such a situation, the separate sCarchict !l tie' dif r i po ,,rt mic cf tic. rit lrio ,m le cc cc .4-
especially serious. Much storagc is also wisi el (Kart t tic, Ti i ittfit '. IX3 '22If)

In s eiie cases, howlever. tlie clrrent filitt-statc If xci ii -t r i irt i tro- c c , w i r' Ot , c y') -r

co-occurrence restrict icmnis veI if (II itai o d I I ;II t IIcI c y Ic iw i , ,, 1 . , ,1 I ' ri xI X. I-
erally apply onily to words of parti'culir cl.c.'s. thus ri.tkcmc it itri - i-' T,. hive -t ,,
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lexicons for the various classes of words involved. But since prefixes and suffixes can pro-
ductively formr new words of' various cla-sses (for instance', -ize folrm4 verbsA), it may not be
possible for at hexicon to list theiii all. Formally speaking, if both prefixes and suffixes (i) are
fully productive, (ii) caii chiange the categories of words arbitrarily. and (iii) ci attach to only
particular categories of words, then sep~arated dependencies can arise that exceedl the power of

a ffinie-state lexicon structure, In such cases, context-f ree rules of .ojii(, kind might be better
suited to the hierarchical word-structures4 that are involved. Alterujit ively, it might be prefer-
able to subdivide the problem by enforcing only crude finite-state combinatorial constraints
while figuring out the lexical-surface correspondence, then filterimjg the analyses in a more
sophisticated way afterward.

7.2. Merging the Lexicons

The number of separate lexicon searches can obviously be retluced if there is only one
ltexicon. Roots anil affixes can all be listed together, with the c~imbinatory possibilities of
vitrion.M (lenheilts indicated by a feature system. Such a feature system c:an be used whether or
not tilie existing finlite-state dictionary framiework is rep~laced with :something more powerful.

Witiiin the existinig framework, each lexicon name can be interpreted as a feature; the
(oiitiimuation class of each~ entry is then taken to speciy the psil eio etrso t

* l~~lmiiiediate successor in the word. Alternatively, a more powerful frmntework might be modelled
aifter the hiistic framework of Lieber f,1980). Context-free macliinery of sonme kind could
imipletiient the recovery of hierarchical sttueture, the ap~plication of Lieber's feature-percolation
conuventions. and the enforcement of comnbinatory restrictions. Common grainma-r-processing
techiniques could be used to predict at each boundary the set of permissible combinatorial
features (the continuation class) of the next segment of input.

As rioted, however, merging the lexicon., in this way has the disadvantage that it prolongs
som~le dictionary searches that would have failed early with more finiely-divided lexicons. At
nmodest cos;t in timei( and space, this disadvantage can be eliminated by adding bit vectors to
flic internal letter-tree form of the lexicon. The bit vector associated with a link in the letter
trce( inidicates which classes of words or affixes can be found in the subtree below. Bit vectors
should also b( associated with the output8 of the tree.

The bit-vector schenie mnakes it possible to search in parallel through a of the lexicons in
at continuation class. The implementation will mio longer interpret a continuation class in terms
Of the inividual letCte-trees of several lexicons; instead, a continuation class will correspond
to att eii1cotlec set of lexicon nimes for use in descending the single merged letter-tree. Before
dvc-.eding a branch (or usinig an outp~ut.). it is mecesiary to check whether there is a non-null
noctr~-cht i between the lexicons comprising thel ilesired continuation class and the lexicons
iicce.cibhe down the branch. Oi m iiuty computers. this test can be carried out in a single
inst ruct ion, if the wnmber of lexicons in the dictionary is smnall (e.g. !5 32). Search should
tcrmiiatc if the intersection is null. With the "virtual" split lexicons provided by the bit-vector

s4 miie. a failing searchi ('ain teriniate just as early in the lexical string A it will with lexicons
t .it have incividiiud let ter-trees: Figure 16 shows an idlealized illustration. In an actual system,
lie di4 t ioiiary wouild likive miore finely divided lexicons than N and V. especially for sAuffixes.

An immplenietitat ion of this (dict ionary schenme was use'd to generate the traces shown in
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IN, V}

i
I N, V}

/ {mv}
t \/ v

N V N V
Figure 16: If separate letter trees for nouns and verbs are merged a; on the left, failing searches may

be prolonged unnecessarily. Assuming that no nouns are accessible down the kil... branch of the
merged tre, it is useless to traverse that branch if only a noun is acceptable in the current context.
However, the frtitlessness of the branch may not be app,|rent until the end of Ul entry (e.g. kill)
is reached and category features are available. li the letter tree ol the right, each link has been
augiented with a bit-vector that indicates the classes of entries that are accessible down the link.
The bit-vectors enable the system to terminate a failing .earch without going any further down the
tree than it would with unmerged lexicons. hi this case, the kil.. subtree would not be searched
because the intersection of {V) and {N} is null.

Figure 3 and succeeding figures. Without the merged dictionary, the recognizer for English
locates a suffix in the continuation class /V by doing a separate letter-tree descent for each of
the lexicons P3, PS, PP, PR, I. AG, and AB. With the merged dictionary, the recognizer needs
only one letter-tree descent in the virtual lexicon (/V) {P3. PS, PP. PR, I, AG}, thus reducing
the number of steps needed to analyze an input. Finely divided lexicons (hence continuation
classes with several members) are typically necessary for capturing co-occurrence restrictions
even in approximate form. and consequently the merged dictionary almost always speeds up
recognizer operation. Finally. even though it takes extra space to augment Links and outputs
with bit-vectors, the merged dictionary can also save space by sharing structure among what

,q would otherwise b6 separate letter trees. D
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